Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

7-Nitro-2-phenyl-4*H*-3,1-benzoxazin-4-one

Zulfiqar Ali Khan, Khalid M. Khan and Shazia Anjum*

HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan Correspondence e-mail: anjumshazia@yahoo.com

Received 8 August 2007; accepted 20 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.057; wR factor = 0.171; data-to-parameter ratio = 11.7.

The title compound, $C_{14}H_8N_2O_4$, was synthesized by reacting *p*-nitroanthranilic acid and benzoyl chloride at ambient temperature. The structure is stabilized by an intramolecular $C-H\cdots O$ hydrogen bond and an intermolecular $C-H\cdots O$ hydrogen bond. Additionally, weak π - π stacking interactions [centroid-centroid distance 3.6 (17) Å] between adjacent molecules further stabilize the crystal structure and form parallel layers along the *b* axis.

Related literature

For related literature, see: Allen *et al.* (1987); Bain & Smalley (1968); Bernstein *et al.* (1995); Bouillant *et al.* (1983); Colson *et al.* (2005); El-Din (2000); Fenton *et al.* (1989); Francis *et al.* (2000); Gutschow *et al.* (1998); Hamprecht *et al.* (2004); Hauteville *et al.* (1988); Hodson *et al.* (2000); Johnson & Pattison (1986); Kakuta *et al.* (2001); Krantz *et al.* (1990); Mayama *et al.* (1981); Pavlidis & Perry (1994); Ponchet *et al.* (1984); Shalaby *et al.* (2000); Ulrich (1991); Uejima *et al.* (1993).

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_8N_2O_4\\ M_r=268.22\\ Monoclinic, P2_1/c\\ a=7.6403\ (14)\ \text{\AA}\\ b=7.4693\ (13)\ \text{\AA}\\ c=22.047\ (4)\ \text{\AA}\\ \beta=105.595\ (6)^\circ \end{array}$

 $V = 1211.9 (4) Å^{3}$ Z = 4Mo Ka radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 293 (2) K $0.45 \times 0.42 \times 0.09 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer5798 measured reflectionsAbsorption correction: multi-scan
(SADABS; Sheldrick, 1996)
 $T_{min} = 0.952$, $T_{max} = 0.990$ 5798 measured reflectionsSI09 independent reflections
1821 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.019$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.057$	181 parameters
$wR(F^2) = 0.171$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
2109 reflections	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond g	eometry (A, °)
-----------------	---------------	---

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C5-H5A\cdotsO1^{i}$	0.93	2.56	3.301 (3)	137
$C14-H14A\cdots O2$	0.93	2.41	2.738 (3)	100

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The authors are grateful to the Higher Education Commission, Pakistan for generous financial support under the 'National Research Program for Universities'.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2096).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bain, D. I. & Smalley, R. K. (1968). J. Chem. Soc. 13, 1593-1597.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bouillant, M. L., Favre-Bonvin, J. & Ricci, P. (1983). *Tetrahedron Lett.* 24, 51– 52.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Colson, E., Wallach, J. & Hauteville, M. (2005). Biochimie, 87, 223-230.
- El-Din, N. S. (2000). Acta Pharm. 50, 239-248.
- Fenton, G., Newton, C. G., Wyman, B. M., Bagge, P., Dron, D. I., Ridell, D. & Jones, G. D. (1989). J. Med. Chem. 32, 265–272.
- Francis, H. H., Robert, D., John, M. T., Jane, C. B., Robert, D. C. & John, P. R. M. (2000). Chem. Abstr. 133, 105042h.
- Gutschow, M., Neumann, U., Sieler, J. & Eger, K. (1998). *Pharm. Acta Helv.* **73**, 95–103.
- Hamprecht, G., Würzer, B. & Witschel, M. (2004). Chimia, 58, 117-122.
- Hauteville, M., Ponchet, M., Ricci, P. & Favre-Bonvin, J. (1988). J. Heterocycl. Chem. 25, 715–718.
- Hodson, H. F., Downham, R., Mitchell, T. J., Carr, B. J., Dunk, C. R. & Palmer, R. M. J. (2000). *Chem. Abstr.* 133, 105042h.
- Johnson, J. L. & Pattison, I. (1986). J. Heterocycl. Chem. 23, 249-251.
- Kakuta, H., Koiso, Y., Takahashi, H., Nagasawa, K. & Hashimoto, Y. (2001). *Heterocycles*, 55, 1433–1438.
- Krantz, A., Spencer, R. W., Tam, T. F., Liak, T. J., Copp, L. J., Thomas, E. M. & Rafferty, S. P. (1990). J. Med. Chem. 33, 464–479.

Mayama, S., Tani, T., Ueno, T., Hirabayashi, K., Nakashima, T., Fukami, H., Mizuno, Y. & Irie, H. (1981). *Tetrahedron Lett.* 22, 2103–2106. Nardelli, M. (1995). J. Appl. Cryst. 28, 659. Pavlidis, V. H. & Perry, P. J. (1994). Synth. Commun. 24, 533-548.

- Ponchet, M., Martin-Tanguy, J., Marais, A. & Poupet, A. (1984). Phytochem. 23, 1901-1903.
- 25, 1961 1965.
 Shalaby, A. A., El-Khamry, A. M. A., Shiba, S. A., Ahmed, A. A. A. E. A. & Hanafi, A. A. (2000). Arch. Pharm. (Weinheim), **333**, 365–372.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Visconsin, Cork.
 Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
 Uejima, Y., Kokubo, M., Oshida, J., Kawabata, H., Kato, Y. & Fujoo, K. (1993).
 J. Pharmacol. Exp. Ther. 265, 516–523.
- Ulrich, R. (1991). J. Heterocycl. Chem. 28, 2005-2012.

Acta Cryst. (2007). E63, o4226-o4227 [doi:10.1107/S1600536807046168]

7-Nitro-2-phenyl-4H-3,1-benzoxazin-4-one

Z. A. Khan, K. M. Khan and S. Anjum

Comment

Recent work by the medicinal chemists had led to a number of drugs related uses being found for this class of heterocyclic compound. Fenton *et al.* have described plasma lipid altering characteristics of a series of 2-substituted-4*H*-3,1-benzoxazin-4-one as high density lipoprotein elevators for the treatment of patients suffering from hyperlipoproteinemia and associated diseases (Fenton *et al.*, 1989). 2-Substituted-4*H*-3,1-benzoxazin-4-one base has been utilized as potent inhibitors of human leukocyte elastase (Krantz *et al.*, 1990) and serine proteases (Gutschow *et al.*, 1998). The National Cancer Institute, Washington, USA has also shown interest in 1-[3-(7-chloro-4-oxo-3,1-benzoxazin-4-yl) phenyl] methyl pyridinium chloride (NSC-341, 964) (Johnson & Pattison, 1986), evaluating its anti-neoplastic activity. Initial studies on 2-substituted-4*H*-3,1-benzoxazin-4-one showed good cytotoxic activity (Pavlidis & Perry, 1994) and herbicidal properties (Hamprecht *et al.*, 2004). A variety of biological activities were associated with 2-Substituted-4*H*-3,1-benzoxazin-4-ones for example antifungal, antibacterial (Bouillant *et al.*, 1983; Ponchet *et al.*, 1984; Mayama *et al.*, 1981; Hauteville *et al.*, 1988; El-Din, 2000; Shalaby *et al.*, 2000) and anti-elastase properties (Colson *et al.*, 2005). They can be used for the treatment of obesity (Hodson *et al.*, 2000) and also found to be novel specific puromycin-sensitive aminopeptidase inhibitors (Kakuta *et al.*, 2001).

The 2-aryl-substituted-4*H*-3,1-benzoxazin-4-ones act as novel active substances for the cardiovascular system. They exhibit relaxing effect on smooth musculature in particular and markedly increase coronary flow through langendroff hearts (Ulrich, 1991). The promising therapeutic potential of this class of compounds prompted us to synthesize and biologically screen series of structural variants of 2-substituted-4*H*-3,1-benzoxazin-4-one. The title compound (I), is expected to possess some interesting biological activities; however present paper describes the X-ray diffraction studies that would be very help for us in molecular modeling and future drug design.

The title compound (I), was synthesized by employing (Scheme-1) Bain & Smalley methodology (Bain & Smalley, 1968); the reaction of *p*-nitroanthranilic acid with benzoylchloride in excess of pyridine gave title compound (I) in 90% yield.

All bond lengths in the title compound (I) show normal values (Allen *et al.*, 1987). The title compound (I) is nearly planar with slight deviation [4.31 (13)°] of benzene ring from the mean plane of bezoxazine moiety. The one intramolecular C—H···O hydrogen bond generates the S(5) graph set motif, while one intermolecular C—H···O hydrogen bond keeps the molecules in parallel layers along *ac* plane in head to head fashion by two fold inversion axis (Bernstein *et al.*, 1995). The additional π — π stacking interactions between adjacent molecules further stabilize the crystal structure along *b* axis. The centroid–centroid distances between the rings are $Cg1-Cg3^{ii} = 3.5757$ (17) Å [symmetry code ii: 2 - x, -y, -z], where Cg1 and Cg3 are the centroids of the rings C1/O2/C2/N1/C8/C7 and C9/C10/C11/C12/C13/C14, respectively.

Experimental

To a solution of p-nitroanthranilic acid (1.1 g, 6.04 mmol) in pyridine (25 ml) was added benzoylchloride (1.69 g, 12.08 mmol). The mixture was shaken for 5 min and placed at room temperature for a further 25 min., with occasional shaking.

The reaction mixture was stirred into cold water (200 ml) and the precipitate was filtered off. The residue was washed free of pyridine with cold water (3x 60 ml) and dried. The title compound (I) was crystallized from ethanol in 90% yield (1.46 g).

Refinement

All the rest of atoms were placed in calculated positions with a C—H distances in 0.93 Å and $U_{iso}(H)$ values were constrained to be $1.5U_{eq}(C)$ of all the carrier atoms.

Figures

Fig. 1 The structure of (I), showing 50% probability displacement ellipsoids and the atomnumbering scheme. A dashed line indicates the intramolecular hydrogen bonds. Fig. 2 The crystal packing of (I), viewed down the b axis.

7-Nitro-2-phenyl-4H-3,1-benzoxazin-4-one

Crystal data	
$C_{14}H_8N_2O_4$	$F_{000} = 552$
$M_r = 268.22$	$D_{\rm x} = 1.470 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Melting point: 430 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 7.6403 (14) Å	Cell parameters from 3298 reflections
<i>b</i> = 7.4693 (13) Å	$\theta = 2.8 - 27.8^{\circ}$
c = 22.047 (4) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 105.595 \ (6)^{\circ}$	T = 293 (2) K
$V = 1211.9 (4) \text{ Å}^3$	Plate, yellow
Z = 4	$0.45 \times 0.42 \times 0.09 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	2109 independent reflections
Radiation source: fine-focus sealed tube	1821 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$

Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.8^{\circ}$
ω scans	$h = -9 \rightarrow 7$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -8 \rightarrow 8$
$T_{\min} = 0.952, \ T_{\max} = 0.990$	$l = -26 \rightarrow 24$
5798 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.171$	$w = 1/[\sigma^2(F_o^2) + (0.0828P)^2 + 0.9147P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
2109 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
181 parameters	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.6749 (3)	0.2424 (3)	-0.15791 (9)	0.0724 (6)
O2	0.7645 (3)	0.1864 (2)	-0.05594 (8)	0.0574 (5)
O3	0.3710 (3)	-0.6371 (3)	-0.09118 (9)	0.0771 (7)
O4	0.2699 (3)	-0.6007 (3)	-0.19100 (10)	0.0854 (7)
N1	0.7048 (3)	-0.0810 (3)	-0.01017 (9)	0.0538 (6)
N2	0.3523 (3)	-0.5488 (3)	-0.13872 (11)	0.0608 (6)
C1	0.6737 (4)	0.1380 (4)	-0.11668 (12)	0.0546 (6)
C2	0.7748 (3)	0.0731 (3)	-0.00586 (11)	0.0482 (6)
C3	0.5316 (4)	-0.3121 (3)	-0.07507 (11)	0.0520 (6)
H3A	0.5450	-0.3848	-0.0399	0.062*
C4	0.4358 (3)	-0.3700 (3)	-0.13323 (11)	0.0502 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C5	0.4115 (3)	-0.2681 (4)	-0.18714 (11)	0.0533 (6)
H5A	0.3444	-0.3114	-0.2260	0.064*
C6	0.4892 (4)	-0.1012 (4)	-0.18178 (11)	0.0551 (6)
H6A	0.4760	-0.0306	-0.2175	0.066*
C7	0.5873 (3)	-0.0367 (3)	-0.12344 (11)	0.0484 (6)
C8	0.6090 (3)	-0.1414 (3)	-0.06941 (11)	0.0467 (6)
C9	0.8768 (3)	0.1498 (3)	0.05463 (12)	0.0510 (6)
C10	0.9067 (3)	0.0449 (4)	0.10843 (12)	0.0573 (7)
H10A	0.8632	-0.0719	0.1058	0.069*
C11	1.0012 (4)	0.1145 (4)	0.16582 (13)	0.0664 (8)
H11A	1.0204	0.0443	0.2019	0.080*
C12	1.0670 (4)	0.2860 (5)	0.17032 (15)	0.0708 (9)
H12A	1.1314	0.3313	0.2092	0.085*
C13	1.0377 (4)	0.3911 (5)	0.11741 (16)	0.0761 (9)
H13A	1.0820	0.5077	0.1206	0.091*
C14	0.9423 (4)	0.3238 (4)	0.05931 (14)	0.0672 (8)
H14A	0.9223	0.3952	0.0235	0.081*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0975 (16)	0.0616 (12)	0.0559 (11)	-0.0156 (11)	0.0169 (10)	0.0115 (10)
O2	0.0667 (11)	0.0534 (10)	0.0503 (10)	-0.0101 (8)	0.0125 (8)	0.0019 (8)
O3	0.1085 (17)	0.0565 (12)	0.0608 (12)	-0.0212 (11)	0.0135 (11)	0.0014 (10)
O4	0.1070 (17)	0.0685 (13)	0.0624 (13)	-0.0169 (12)	-0.0087 (12)	-0.0156 (11)
N1	0.0614 (13)	0.0562 (13)	0.0416 (11)	-0.0105 (10)	0.0099 (9)	-0.0005 (9)
N2	0.0667 (14)	0.0547 (13)	0.0549 (13)	-0.0045 (11)	0.0061 (11)	-0.0067 (11)
C1	0.0587 (15)	0.0574 (15)	0.0476 (14)	-0.0031 (12)	0.0139 (11)	0.0038 (12)
C2	0.0473 (13)	0.0520 (14)	0.0471 (13)	-0.0032 (11)	0.0156 (10)	-0.0011 (11)
C3	0.0598 (15)	0.0523 (14)	0.0426 (13)	-0.0010 (12)	0.0114 (11)	0.0039 (11)
C4	0.0496 (13)	0.0523 (14)	0.0484 (13)	-0.0008 (11)	0.0128 (11)	-0.0041 (11)
C5	0.0534 (14)	0.0639 (16)	0.0402 (13)	0.0013 (12)	0.0086 (10)	-0.0046 (11)
C6	0.0607 (15)	0.0613 (16)	0.0420 (13)	-0.0005 (12)	0.0119 (11)	0.0060 (11)
C7	0.0485 (13)	0.0535 (14)	0.0443 (13)	0.0012 (11)	0.0143 (10)	0.0028 (10)
C8	0.0489 (13)	0.0491 (13)	0.0412 (12)	-0.0010 (10)	0.0107 (10)	-0.0017 (10)
C9	0.0457 (13)	0.0567 (15)	0.0511 (14)	-0.0060 (11)	0.0139 (11)	-0.0091 (11)
C10	0.0541 (14)	0.0628 (16)	0.0527 (14)	-0.0010 (12)	0.0106 (12)	-0.0053 (12)
C11	0.0620 (17)	0.077 (2)	0.0539 (16)	-0.0014 (15)	0.0058 (13)	-0.0085 (14)
C12	0.0580 (17)	0.091 (2)	0.0608 (18)	-0.0057 (15)	0.0107 (13)	-0.0198 (16)
C13	0.0690 (19)	0.0730 (19)	0.088 (2)	-0.0243 (16)	0.0233 (16)	-0.0246 (18)
C14	0.0728 (18)	0.0660 (18)	0.0656 (17)	-0.0172(15)	0.0236 (14)	-0.0066 (14)

Geometric parameters (Å, °)

O1—C1	1.199 (3)	С5—Н5А	0.9300
O2—C2	1.376 (3)	C6—C7	1.389 (3)
O2—C1	1.380 (3)	С6—Н6А	0.9300
O3—N2	1.214 (3)	С7—С8	1.397 (3)
O4—N2	1.218 (3)	C9—C14	1.386 (4)

N1—C2	1.262 (3)	C9—C10	1.389 (4)
N1—C8	1.390 (3)	C10—C11	1.379 (4)
N2—C4	1.471 (3)	C10—H10A	0.9300
C1—C7	1.452 (4)	C11—C12	1.370 (5)
С2—С9	1.468 (3)	C11—H11A	0.9300
C3—C4	1.365 (3)	C12—C13	1.374 (5)
C3—C8	1.397 (3)	C12—H12A	0.9300
С3—НЗА	0.9300	C13—C14	1.387 (4)
C4—C5	1 381 (3)	С13—Н13А	0.9300
C5—C6	1.372 (4)	C14—H14A	0.9300
C2—O2—C1	121.5 (2)	C6—C7—C1	121.6 (2)
C2—N1—C8	118.2 (2)	C8—C7—C1	118.0 (2)
O3—N2—O4	123.7 (2)	N1—C8—C3	118.9 (2)
O3—N2—C4	118.3 (2)	N1—C8—C7	122.1 (2)
04—N2—C4	118.0 (2)	C3—C8—C7	119.0 (2)
01 - 02	117 5 (2)	C14-C9-C10	119.5 (2)
01 - C1 - C7	127.0(2)	C14-C9-C2	121.8 (2)
$0^{2}-C^{1}-C^{7}$	127.0(2) 115.5(2)	C10-C9-C2	121.0(2) 1187(2)
N1 - C2 - O2	1247(2)	$C_{11} - C_{10} - C_{9}$	110.7(2) 119.8(3)
N1 - C2 - C9	121.7(2) 1224(2)	C_{11} C_{10} H_{10A}	120.1
02 - 02 - 09	122.4(2) 113.0(2)	C9-C10-H10A	120.1
C_{2}^{-} C_{2}^{-} C_{3}^{-} C_{8}^{-}	113.0(2) 118.7(2)	C_{12} C_{11} C_{10}	120.1 120.7(3)
C4-C3-H3A	120.6	C12 $C11$ $H11A$	110 7
C_{4} C_{3} C_{3	120.6	C_{12} C_{11} H_{11A}	110.7
$C_3 = C_4 = C_5$	120.0 123.2(2)	C_{11} C_{12} C_{13}	119.7 120.0(3)
$C_3 = C_4 = C_3$	123.2(2) 118 4 (2)	$C_{11} = C_{12} = C_{13}$	120.0 (3)
$C_{5} = C_{4} = N_{2}$	110.4(2)	C12 - C12 - H12A	120.0
C_{3}	110.3(2)	C13 - C12 - C12	120.0 120.2(2)
$C_0 = C_2 = C_4$	118.1 (2)	C12 - C13 - C14	120.2 (3)
C6—C5—H5A	120.9	C12—C13—H13A	119.9
C4—C5—H5A	120.9	C14—C13—H13A	119.9
C_{5}	120.5 (2)	C9	119.9 (3)
С5—С6—Н6А	119.7	C9—C14—H14A	120.1
С/—С6—Н6А	119.7	C13—C14—H14A	120.1
C6—C7—C8	120.4 (2)		
C2—O2—C1—O1	-178.1 (2)	C2—N1—C8—C3	179.6 (2)
C2—O2—C1—C7	1.5 (3)	C2—N1—C8—C7	-0.5 (4)
C8—N1—C2—O2	-0.5 (4)	C4—C3—C8—N1	179.3 (2)
C8—N1—C2—C9	179.3 (2)	C4—C3—C8—C7	-0.6 (4)
C1—O2—C2—N1	0.0 (4)	C6-C7-C8-N1	-179.4 (2)
C1—O2—C2—C9	-179.9 (2)	C1C7C8N1	2.0 (4)
C8—C3—C4—C5	0.1 (4)	C6—C7—C8—C3	0.5 (4)
C8—C3—C4—N2	-179.1 (2)	C1—C7—C8—C3	-178.1 (2)
O3—N2—C4—C3	0.5 (4)	N1-C2-C9-C14	-175.5 (3)
O4—N2—C4—C3	-178.7 (2)	O2—C2—C9—C14	4.3 (4)
O3—N2—C4—C5	-178.7 (2)	N1-C2-C9-C10	4.0 (4)
O4—N2—C4—C5	2.1 (4)	O2—C2—C9—C10	-176.1 (2)
C3—C4—C5—C6	0.7 (4)	C14—C9—C10—C11	-0.1 (4)
N2-C4-C5-C6	179.8 (2)	C2—C9—C10—C11	-179.6 (2)

C4—C5—C6—C7	-0.8 (4)	C9—C10—C11—C12	-0.4 (4)
С5—С6—С7—С8	0.3 (4)	C10-C11-C12-C13	0.6 (5)
C5—C6—C7—C1	178.8 (2)	C11—C12—C13—C14	-0.3 (5)
O1—C1—C7—C6	-1.4 (4)	C10-C9-C14-C13	0.4 (4)
O2—C1—C7—C6	179.0 (2)	C2-C9-C14-C13	179.9 (3)
O1—C1—C7—C8	177.2 (3)	C12-C13-C14-C9	-0.2 (5)
O2—C1—C7—C8	-2.4 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C5—H5A····O1 ⁱ	0.93	2.56	3.301 (3)	137
C14—H14A…O2	0.93	2.41	2.738 (3)	100
Symmetry codes: (i) $-x+1$, $y-1/2$, $-z-1/2$.				

Fig. 3

